N3	0.3252 (4)	0.0603 (6)	0.2127 (3)	0.0501 (13)
N4	0.1134 (3)	0.1615 (5)	0.0836(3)	0.0376 (11)
N5	0.2750 (3)	0.3496 (5)	0.0746 (3)	0.0374 (11)
N6	0.4110 (3)	0.1356 (5)	0.0321 (3)	0.0353 (11)
C1	0.1727 (4)	-0.0728 (7)	-0.1133 (4)	0.0434 (14)
C2	0.2446 (4)	-0.1761 (7)	-0.0448 (4)	0.0428 (14)
C3	0.3263 (4)	-0.1895 (6)	0.1336 (4)	0.0431 (14)
C4	0.3244 (4)	-0.1054 (7)	0.2280 (4)	0.048 (2)
C5	0.1089 (4)	0.3244 (7)	0.1111 (4)	0.048 (2)
C6	0.1742 (4)	0.4166 (6)	0.0591 (4)	0.0458 (15)
C7	0.3433 (4)	0.3967 (7)	0.0129 (4)	0.049 (2)
C8	0.4366 (4)	0.3005 (7)	0.0348 (5)	0.053 (2)
Cl1	0.40654 (10)	0.4498 (2)	0.29790(9)	0.0463 (4)
C12	0.03964 (10)	-0.2220 (2)	0.14121 (10)	0.0474 (4)
01	0.1160 (4)	0.0396 (7)	0.2998 (4)	0.072 (2)

Table 2. Selected geometric parameters (Å, °)

Ni1—N1	2.166 (4)	Ni1—N4	2.125 (4)
Ni1—N2	2.090 (4)	Ni1—N5	2.083 (4)
Ni1—N3	2.146 (4)	Nil—N6	2.162 (4)
N1—Ni1—N3 N2—Ni1—N5	161.9 (2) 177.5 (2)	N4—Ni1—N6	162.7 (2)
N1—C1—C2—N2	55.4 (6)	N4—C5—C6—N5	-51.8 (6)
N2—C3—C4—N3	- 50.7 (6)	N5—C7—C8—N6	50.8 (7)

Table 3. Hydrogen-bonding geometry (Å, °)

D—H···A	<i>D</i> —-H	H···A	$D \cdots A$	D— H ··· A	
O1—H1O· · ·Cl2	0.76 (6)	2.50 (6)	3.195 (6)	153 (7)	
O1-H2O···C12'	0.87 (6)	2.33 (6)	3.187 (6)	171 (6)	
$N1 - H1 \cdot \cdot \cdot C12^{ii}$	0.90	2.59	3.419 (4)	154	
$N1 - H1' \cdots C11^{iii}$	0.90	2.59	3.415 (4)	153	
N2	0.91	2.47	3.365 (4)	169	
N4—H4···C12"	0.90	2.59	3.418 (4)	153	
N4—H4′···O1	0.90	2.38	3.195 (7)	151	
N5—H5···C11	0.91	2.46	3.364 (4)	172	
N6—H6···Cl1 ^{iv}	0.90	2.55	3.446 (4)	176	
N6—H6'···CI1 ⁱⁿⁱ	0.90	2.46	3.344 (4)	167	
Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, -y, -z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$;					

(iv) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$. Data collection: XSCANS (Siemens, 1994). Cell refinement:

XSCANS. Data reduction: *XSCANS* (stentens, 1994). Cent remininter. *XSCANS*. Data reduction: *XSCANS*. Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990a). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *SHELXTL/PC* (Sheldrick, 1990b). Software used to prepare material for publication: *SHELXL*93.

The financial support of Natural Science and Engineering Research Council of Canada is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: FG1177). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Biagini, S. & Cannas, M. (1970). J. Chem. Soc. A, pp. 2398-2408. Bradford, P., Hynes, R. C., Payne, N. C. & Willis, C. J. (1990). J.

- Am. Chem. Soc. 112, 2648–2654.
- Hodgson, P. G. & Penfold, B. R. (1974). J. Chem. Soc. Dalton Trans. pp. 1870-1872.

- Hynes, R. C. (1989). PhD thesis, The University of Western Ontario, London, Canada.
- Hynes, R. C., Willis, C. J. & Payne, N. C. (1990). J. Chem. Soc. Chem. Commun. pp. 744-745.
- Hynes, R. C., Willis, C. J. & Payne, N. C. (1992). Acta Cryst. C48, 42-45.
- Paoletti, P., Biagini, S. & Cannas, M. (1969). J. Chem. Soc. Chem. Commun. pp. 513-514.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stephens, F. S. (1969). J. Chem. Soc. A. pp. 2233-2240.
- Willis, C. J. (1988). Coord. Chem. Rev. 88, 133-202.

Acta Cryst. (1996). C52, 1881-1884

{4-Methyl-2-[(2-oxidobenzylidene)amino]phenolato(2–)-*N*,*O*,*O*'}(piperidine-*N*)nickel(II)

Orhan Atakol,^{*a*} Adnan Kenar,^{*a*} Filiz Ercan,^{*b**} Musa Sari^c and Rahmi Yağbasan^c

^aDepartment of Chemistry, Faculty of Science, University of Ankara, Beşelver 06100, Ankara, Turkey, ^bDepartment of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ^cDepartment of Physics Education, Gazi Education Faculty, Gazi University, Beşevler 06500, Ankara, Turkey. E-mail: filiz@eti.cc.hun.edu.tr

(Received 9 October 1995; accepted 11 March 1996)

Abstract

In the title compound, $[Ni(C_{14}H_{11}NO_2)(C_5H_{11}N)]$, the coordination geometry at the Ni atom was found to be a slightly distorted square-planar polygon formed by the O, N and O' donor atoms of the tridentate ligand and the N donor atom of the monodentate ligand [O—Ni—N 86.6 (2)–95.9 (3)°, Ni—O 1.810 (5) and 1.833 (4), Ni—N 1.862 (6) and 1.933 (7) Å]. The diamagnetic properties of the complex, determined by the Gouy method, are in agreement with the planar coordination.

Comment

Schiff bases and their biologically active complexes have been extensively studied over the last two decades. Several complexes of salicylaldimine (Stewart & Lingafelter, 1959; Calligaris, Nardin & Randaccio, 1972; Bhatia, Bindlish, Saini & Jain, 1981; Kessissoglou, Raptopoulou, Bakalbassis, Terzis & Mrozinski, 1992) and the complexes formed between tridentate N-substituted phenylsalicylaldimines and divalent metal ions such as Cu²⁺, Ni²⁺, Co²⁺ and Fe²⁺ (Kato & Muto, 1988; Kurtz, 1990) have been characterized. In biological systems such as jack-bean urease and some hydrogenases, nickel is in the complexed form (Walsh & Orme-Johnson, 1987). Schiff-base complexes have also been used in electrochemical research and catalytic reactions (Araya, Vargas & Costamagna, 1986; Hamilton, Drago & Zombeck, 1987; Costamagna, Vargas, Latorre, Alvarado & Mena, 1992). The Ni^{$\tilde{2}+$}, Co²⁺, Cu²⁺ and Fe³⁺ ions form similar complexes with Schiff-base ligands (Maggio, Pizzino & Romano, 1974). Among these ions, only Ni²⁺ forms a non-dimeric mononuclear square-planar diamagnetic complex when an amine is added (Maggio, Pizzino, Romano & Dia, 1976; Gunduz & Atakol, 1989). The structure of the title Ni^{2+} complex, (I), was determined in order to compare the geometrical features with those of related compounds using piperidine as the amine ligand.

Compound (I) is a diamagnetic square-planar nickel complex, as was obtained in previous cases (Elerman, Paulus & Fuess, 1991; Kabak, Elerman, Ozbey & Atakol, 1995). The coordination about Ni²⁺ is not completely regular; the bond angles are between 86.6(2)and 176.8 (3)°. The average Ni-O and Ni-N distances are 1.821 (5) and 1.897 (7) Å, respectively. The bond lengths and angles are in agreement with values reported previously for Ni²⁺ complexes (Cariati, Ganadu, Zoroddu, Mansani & Quidacciolu, 1985; Fernández-G., Rosales, Toscano & Tapia T., 1986; Fernández-G., Rosales-Hoz, Rubio-Arroyo, Salcedo, Toscano & Vela, 1987; Hökelek, Gündüz, Hayvali & Kilic, 1995). The phenyl rings A (C1-C6) and B (C8-C13) are planar, while piperidine ring C (N2, C15–C19) is not. The latter group has the expected chair conformation. The dihedral angle between the best least-squares planes D (C15, N2, C19) and E (C15, C16, C18, C19) is 46.7 (6)°, and between E and F (C16, C17, C18) is $47.2(7)^{\circ}$. The distances of the N2 and C17 chair atoms from the plane of the other four atoms of the six-membered piperidine ring are between 0.590 (6) and -0.615 (9) Å, far from the expected value of 0.726 Å.

Fig. 1. An ORTEP drawing (Johnson, 1965) displaying the atomnumbering scheme. Displacement ellipsoids are shown at the 50% probability level for the non-H atoms.

Experimental

A solution of N-(2-hydroxy-4-methylphenyl)salicylaldimine (1 mol) was dissolved in acetonitrile (50 ml) with heating. Piperidine (1.5 ml) was added slowly and the resulting solution mixed with Ni(CH₃COO)₂.4H₂O (0.001 mol) dissolved in hot methanol. This final mixture was left to stand in air for 3 d. The red crystals that formed were filtered off and dried in air. Magnetic susceptibility was measured at 296 K using the Gouy method and the complex was found to be diamagnetic. The density D_m was measured pycnometrically.

Crystal data

[Ni(C ₁₄ H ₁₁ NO ₂)(C ₅ H ₁₁ N)] $M_r = 369.11$ Monoclinic $P2_1/c$ a = 10.664 (3) Å b = 14.088 (5) Å c = 12.494 (2) Å $\beta = 110.6 (1)^\circ$ $V = 1757.0 (14) Å^3$ Z = 4 $D_r = 1.395 Mg m^{-3}$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 15 reflections $\theta = 10-13^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$ T = 296 K Prism $0.40 \times 0.20 \times 0.08 \text{ mm}$ Dark red
$D_x = 1.395 \text{ Mg m}^{-3}$ $D_m = 1.358 \text{ Mg m}^{-3}$ Data collection Enraf-Nonius CAD-4	1414 observed reflections
diffractometer $\omega/2\theta$ scans	$[I > 2\sigma(I)]$ R _{int} = 0.01

Absorption correction: empirical via ψ scans (<i>MolEN</i> ; Fair, 1990) $T_{min} = 0.978, T_{max} =$ 0.999	$\theta_{\max} = 25.3^{\circ}$ $h = -12 \rightarrow 0$ $k = -16 \rightarrow 0$ $l = -14 \rightarrow 14$ 3 standard reflections
3497 measured reflections	frequency: 120 min
3173 independent reflections	intensity decay: 1%
Refinement	
Refinement on F	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.059	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.060	Extinction correction: none
S = 1.54	Atomic scattering factors
1414 reflections	from International Tables
217 parameters	for X-ray Crystallography
$w = 1/\sigma(F)^2$	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.002$	

Table	1.	Fractional	l atomic	coordinates	and	equival	ent
		isotropic d	isplacem	ent paramete	ers (Å	Å ²)	

Table 1. Fractional atomic coordinates and equivaler
isotropic displacement parameters (
$$\mathring{A}^2$$
) $B_{eq} = (8\pi^2/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_j^*a_i.a_j.$ x yz B_{eq} Ni0.0576 (1)0.17291 (8)0.33844 (8)3.87 (2)OI0.1839 (5)0.0919 (4)0.4260 (4)5.2 (1)O2-0.0669 (4)0.2536 (4)0.2431 (4)4.0(1)NI-0.0669 (4)0.2536 (4)0.2431 (4)4.0(1)O2-0.0669 (4)0.2536 (4)0.2431 (4)4.0(4)0.1360 (5)0.1671 (5)0.2207 (5)4.3 (2)C10.1360 (5)0.1671 (5)0.2207 (5)4.3 (2)C10.0334 (6)0.5274 (6)4.0 (46 (5)0.3017 (8)-0.0034 (6)0.5372 (6)3.9 (2)C30.3188 (8)-0.0211 (7)0.6854 (8)6.6 (3)C20.3017 (8)-0.0211 (7)0.6854 (8)6.6 (3)C20.318 (8)-0.0211 (7)0.6854 (8)6.6 (3)

Table 2. Selected geometric parameters (Å, °)

0.0739(7)

0.0753 (7)

0.0602(6)

0.1619 (6)

5.7(2)

5.8(2)

C18

C19

0.1611(7)

0.1132(7)

Ni—O1	1.810(5)	C4C5	1.37(1)
Ni02	1.833 (4)	C5—C6	1.40(1)
Ni—N1	1.862 (6)	C6—C7	1.42(1)
Ni—N2	1.933(7)	C8—C9	1.38 (1)
01C1	1.31(1)	C8—C13	1.40(1)
O2-C13	1.35(1)	C9-C10	1.36(1)
N1C7	1.292 (9)	C10-C11	1.39 (1)
N1-C8	1.428 (9)	C10-C14	1.51 (1)
N2-C15	1.436 (9)	C11—C12	1.38(1)
N2-C19	1.47(1)	C12—C13	1.39(1)
C1—C2	1.40(1)	C15—C16	1.54 (1)
C1-C6	1.43 (1)	C16—C17	1.48 (1)
C2—C3	1.36(1)	C17—C18	1.49(1)
C3C4	1.40(2)	C18-C19	1.53 (1)
01—Ni—O2	176.8(3)	C1-C6-C5	119.8 (7)
01-Ni-N1	95.9(3)	C1—C6—C7	121.5 (7)

01—Ni—N2	90.3 (3)	C5—C6—C7	118.7 (8)
02—Ni—N1	87.2 (2)	N1-C7-C6	125.3 (8)
O2—Ni—N2	86.6(2)	N1-C8-C9	128.5 (6)
N1NiN2	173.8 (2)	N1-C8-C13	110.7 (6)
Ni01C1	127.3 (5)	C9—C8—C13	120.8 (6)
Ni	111.8 (4)	C8—C9—C10	121.3 (7)
Ni-N1-C7	125.7 (5)	C9-C10-C11	118.5 (7)
Ni-N1-C8	111.8 (4)	C9-C10-C14	121.2 (7)
C7-N1-C8	122.4 (7)	C11-C10-C14	120.2 (6)
Ni—N2—C15	117.1 (5)	C10-C11-C12	121.0 (7)
Ni-N2-C19	112.3 (5)	C11—C12—C13	120.6 (7)
C15-N2-C19	112.1 (6)	O2-C13-C8	118.3 (6)
01—C1—C2	118.6 (8)	O2-C13-C12	124.1 (7)
01-C1-C6	124.1 (7)	C8-C13-C12	117.6 (7)
C2-C1-C6	117.2 (8)	N2-C15-C16	114.2 (6)
C1-C2-C3	121.8 (9)	C15-C16-C17	111.1 (8)
C2-C3-C4	121.4 (8)	C16C17C18	111.3 (8)
C3—C4—C5	118.5 (9)	C17—C18—C19	112.4 (6)
C4C5C6	121.3 (9)	N2-C19-C18	112.5 (7)
02-Ni-01-C1	-170 (4)	C8-N1-C7-C6	- 178.9 (7)
01-Ni-02-C13	167 (4)	N2-C15-C16-C17	-52.7 (10)
N2-Ni-N1-C7	170(2)	C17—C18—C19—N2	52.8 (9)

A riding model was used for all H atoms, with C-H and N-H = 0.95 Å, and displacement parameters 1.3 times those of the attached atoms. All non-H atoms were refined anisotropically. CAD-4-Express Software (Enraf-Nonius, 1993) was used for data collection. MolEN (Fair, 1990) was used for all calculations and preparation of the ORTEP (Johnson, 1965) plot.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of The Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: AB1328). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Araya, L., Vargas, J. & Costamagna, J. (1986). Transition Met. Chem. 11, 312-316.
- Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.
- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
- Cariati, F., Ganadu, M. L., Zoroddu, M. A., Mansani, R. & Quidacciolu, R. (1985). Inorg. Chem. 24, 4030-4033.
- Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-68.
- Elerman, Y., Paulus, E. F. & Fuess, H. (1991). Acta Cryst. C47, 70-72.
- Enraf-Nonius (1993). CAD-4-Express Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Fernández-G., J. M., Rosales, M. J., Toscano, R. A. & Tapia T., R. G. (1986). Acta Cryst. C42, 1313-1316.
- Fernández-G., J. M., Rosales-Hoz, M. J., Rubio-Arroyo, M. F., Salcedo, R., Toscano, R. A. & Vela, A. (1987). Inorg. Chem. 26, 349-357.
- Gunduz, T. & Atakol, O. (1989). Synth. React. Inorg. Met.-Org. Chem. 19, 441-451.
- Hamilton, D. E., Drago, R. S. & Zombeck, A. (1987). J. Am. Chem. Soc. 109, 374-379.

- Hökelek, T., Gündüz, N., Hayvali, Z. & Kilic, Z. (1995). Acta Cryst. C51, 880-884.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kabak, M., Elerman, Y., Ozbey, S. & Atakol, O. (1995). J. Chem. Crystallogr. 25, 259–262.
- Kato, M. & Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
- Kessissoglou, D. P., Raptopoulou, C. P., Bakalbassis, E. G., Terzis,
- A. & Mrozinski, J. (1992). Inorg. Chem. 31, 4339-4345.
- Kurtz, D. M. (1990). Chem. Rev. 90, 585-606.
- Maggio, F., Pizzino, T. & Romano, V. (1974). Inorg. Nucl. Chem. Lett. 10, 1005-1008.
- Maggio, F., Pizzino, T., Romano, V. & Dia, G. (1976). J. Inorg. Nucl. Chem. 38, 599-601.
- Stewart, J. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
- Walsh, C. T. & Orme-Johnson, W. H. (1987). Biochemistry, 26, 4901– 4906.

Acta Cryst. (1996). C52, 1884-1885

(Pyrrolidine-N)[1-(2-thiophenyliminomethyl)-2-naphtholato(2-)-N,O,S]nickel(II)

Dinçer Ülkü,^a* M. Nawaz Tahir,^a Gülşin Üçar^b and Orhan Atakol^b

^aDepartment of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ^bDepartment of Chemistry, Faculty of Science, University of Ankara, Beşevler 06100, Ankara, Turkey. E-mail: dulku@eti.cc.hun. edu.tr

(Received 29 January 1996; accepted 18 March 1996)

Abstract

In the title compound, $[Ni(C_{17}H_{11}NOS)(C_4H_9N)]$, the coordination around the Ni atom is slightly distorted from square planar. Bond angles within the coordination square have values between 85.0 (1) and 94.8 (1)°. The Ni—S, Ni—O and average Ni—N distances are 2.139 (1), 1.841 (3) and 1.908 (4) Å, respectively. The best plane through the pyrrolidine ring is approximately perpendicular to the planes of the other rings present in the molecule.

Comment

The title nickel(II) complex, (I), contains a monodentate (pyrrolidine) and a tridentate [1-(2-thiophenyliminomethyl)-2-naphtholate] ligand. Similar nickel complexes with O,N,S,N-planar coordination environments around the Ni atom (Soriano-García, Toscano, Valdés-Martínez & Fernández-G., 1985; Kabak, Elerman, Özbey &

Atakol, 1995; Tahir, Ülkü, Atakol & Kenar, 1996) have been reported.

The Ni²⁺ ion has a slightly distorted square-planar coordination (Fig. 1). The O atom lies furthest from the best plane through the Ni, N1, N2, O and S atoms at a distance of 0.132(3) Å. The bond lengths between the Ni atom and the donor S, N1, O and N2 atoms are 2.139 (1), 1.869 (3), 1.841 (3) and 1.948 (4) Å, respectively. Two inequivalent Ni-N distances have also been observed in similar complexes, an indication that these bonds are influenced by the nature of the N-donor atom and also by the number of atoms in the chelate rings (Curtis, 1979). The angles S-Ni-N1 $[89.8(1)^{\circ}]$ and S—Ni—N2 $[91.4(1)^{\circ}]$ are closer to 90° than the angles O-Ni-N1 [94.8(1)°] and O-Ni-N2 $[85.0(1)^\circ]$. The pyrrolidine ring has an envelope confirmation, with the N2 atom lying 0.510(4) Å from the C18-C21 plane. The phenyl rings are essentially coplanar with their respective chelate rings, the dihedral angles being less than 5° .

Fig. 1. An ORTEP (Johnson, 1965) drawing of (I) with the atomnumbering scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles with arbitrary displacement parameters.

Acta Crystallographica Section C ISSN 0108-2701 © 1996